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ABSTRACT 
 

Using first-principles density-functional theory calculations, we show that the 
anomalously large anisotropy of δ-plutonium is a consequence of greatly varying bond-strengths 
between the 12 nearest neighbors.  Employing the calculated bond strengths, we expand the 
tenants of classical crystallography by incorporating anisotropy of chemical bonds, which yields 
a structure with the monoclinic space group Cm for δ-plutonium rather than face-centered cubic 

! 

Fm3m .  The reduced space group for δ-plutonium enlightens why the ground state of the metal 
is monoclinic, why distortions of the metal are viable, and has considerable implications for the 
behavior of the material as it ages.  These results illustrate how an expansion of classical 
crystallography that accounts for anisotropic electronic structure can explain complicated 
materials in a novel way.  
 
INTRODUCTION 
 

Classical crystallography does not incorporate anisotropy of atomic bonds within its 
framework [1].  Rather, it assumes a spherical atom at each lattice site.  While this assumption is 
justifiable for some elements, it becomes less reliable for those with complicated electronic 
structures.  Nowhere is this more the case than with plutonium, which is the most enigmatic 
metal in the Period Table [2-8].  Recently, the phonon dispersion curves for single-grain δ-
plutonium were recorded using inelastic X-ray scattering [9], confirming other measurements 
[10,11] that it is the most anisotropic face-centered cubic (fcc) metal known.  The shear moduli 
C44 and C′ differ by a factor of ~7, which is in strong contrast to aluminum exhibiting a factor of 
1.2 [12].  In addition, δ-Pu has a negative coefficient of thermal expansion and has the most 
crystallographically expanded lattice of all six Pu allotropes (fcc is usually the most densely 
packed crystal structure).  This is evidence that a simple hard-sphere assumption is inappropriate 
for Pu and that the bonding strengths between the 12 nearest neighbors of the fcc δ-Pu lattice are 
not equal.  In turn, this means that the total symmetry of the metal may not be fcc, but rather a 
lower symmetry class. 

Here, we present a novel use of first-principles calculations, which yields the bond 
strengths of the 12 nearest neighbors within the δ-Pu crystal.  Using these calculated bond 
strengths, we systematically progress through crystallographic arguments showing that δ-Pu 
belongs to the monoclinic space group Cm rather than the cubic 
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Fm3m  space group.  Our results 
provide new insight into why plutonium is the only metal with a monoclinic ground state and why 
tetragonal, orthorhombic, or monoclinic distortions of δ-Pu are likely.  These distortions have 
considerable ramifications for the behavior of the metal as it ages, accumulating damage via self-
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irradiation.  Finally, we anticipate the use of these calculations and crystallographic arguments in 
tandem [13] will expand crystallographic determination of complicated materials to incorporate 
electronic structure, consequently providing a unique way to explain complex properties.  
 
CALCULATIONAL DETAILS 
 

For Pu bond strengths, full-potential linear-muffin-tin orbital FPLMTO calculations [14] 
were employed, since these have been used extensively and successfully for transition [15] and 
actinide [16] metals. The "full potential" refers to the use of non-spherical contributions to the 
electron charge density and potential. This is accomplished by expanding these in cubic 
harmonics inside non-overlapping muffin-tin spheres and in a Fourier series in the interstitial 
region. We use two energy tails associated with each basis orbital and for the semi-core 6s, 6p, 
and valence 7s, 7p, 6d, and 5f states, these pairs are different. Spherical harmonic expansions are 
carried out through lmax = 6 for the bases, potential, and charge density. For the electron 
exchange and correlation energy functional, the generalized gradient approximation (GGA) is 
adopted [17,18]. The nearest-neighbor bond strengths are obtained from total energy calculations 
of a 27-atom super cell that uniquely defines all 12 nearest neighbors (NN). By introducing a 
small (2%) displacements, along each of the 12 NN bonds, the force associated with the 
respective bond is obtained from the corresponding energy shift scaled by the magnitude of the 
displacement.  This is the ‘bond strength.’  The super-cell is allowed to spin polarize 
ferromagnetically, whereas spin-orbit interaction is omitted to simplify the calculations. 
Integration over the irreducible wedge of the Brillouin zone (IBZ, 1/4th of the full zone) is 
performed using the special k-point method [19] and we used 20 k points in the IBZ for the fcc 
super-cell. 
 
 
RESULTS AND DISCUSSION 
 

Let us begin with a two-dimensional array of blocks, as shown in Figure 1 (a and b).  
First, a square array of points is created, which is the lattice.  Blocks are then incorporated 
around each lattice point, which is the motif.  The resulting structure is shown Figure 1 (a).  The 
combination of a lattice and motif in two dimensions results in a plane group, the two-
dimensional analog to a space group for three-dimensions.  This two-dimensional structure in 
Figure 1 (a) has a plane group symmetry of 4mm because there is an axis of 4-fold rotation about 
each lattice point and there are four mirror planes marked m1, m2, m3, and m4.  When the upper-
left and lower-right corners of each block are filled, the motif is altered.  The plane group 
symmetry of this structure is accordingly reduced to 2mm because of the loss of 4-fold symmetry 
and the elimination of the m1 and m2 mirror plane planes.  The important point here is that the 
structure in 1(b) still has a square lattice, even though the axis of 4-fold symmetry is lost and the 
total symmetry of the structure is reduced. 

An example of this idea in three dimensions and in a real crystal is the body-centered cubic 
(bcc) structure of α-iron.  When paramagnetic, the structure has a bcc space group of 

! 

Im3m.  
However, when the crystal structure becomes ferromagnetic with aligned moments in the [001] 
direction the symmetry is reduced to I4/mm′m′, as shown in Figure 2 [20].  From a geometry 
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Figure 1. Two periodic arrays illustrating repetition of a lattice (points) and a motif (blocks). (a) 
a pattern showing a plane group symmetry of 4mm and (b) a pattern showing a plane group 
symmetry of 2mm, reduced only by a change in the motif, not the lattice. 
 

 
standpoint a = b = c, but the fact that the spins are aligned along the z-axis lowers the symmetry of 
the crystal structure.  Thus, there does not need to be atomic displacements, and correspondingly a 
change in lattice, to reduce the symmetry of the structure.  Accurate orbital magnetic moments of 
bcc iron cannot be obtained from calculations [21] unless considering a lowering of the symmetry, 
from 48 (cubic) to 16 (tetragonal) operations, due to the preferred orientation of the magnetic spin 
moments along the [001] easy axis.   

 

 
 
Figure 2. The structure of α-iron.  The crystal has a body-centered cubic space group of 

! 

Im3m  
when paramagnetic, but is reduced to I4/mm′m′ when the crystal becomes ferromagnetic with 
aligned moments in the [001] direction. 
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In the case of the two-dimensional array of blocks in Figure 1 (plane group) or in the three-
dimensional bcc structure of α-iron (space group), the same point comes out:  the lattice itself may 
remain high symmetry, but the crystal structure as a whole may be reduced in symmetry due to a 
change in motif.  This is because the symmetry of any plane or space group is composed of the 
intersection of the symmetries of a lattice and a motif.  In ferromagnetic α-iron, the magnetic 
moment produced by the outermost valence electrons not only degrades the symmetry from bcc to 
tetragonal, but also alters the macroscopic properties that we observe, such as elastic constants, 
shear modulus, and phase transformations.  While a magnetic moment can reduce symmetry as 
described above, other aspects of the outermost bonding electrons can also affect the symmetry. 

Armed with this knowledge, let us return to the case of δ-Pu.  We begin with the 
assumption that the lattice is fcc with a = b = c.  A motif is then created, which is the bond 
strengths for the 12 nearest neighbors.  The question is, if an fcc lattice is joined with a motif of 
anisotropic bonds, what is the resultant space group?  In order to resolve this issue the detailed 
electronic structure of Pu must be determined, and in particular the variation of the nearest-
neighbor bond strengths.  This was performed by calculating the energy response (ΔE) of a 2% 
displacement of an atom along each of the 12 nearest-neighbor directions and scaling this with 
the displacement magnitude (u = 0.049Å), as described in the methods section.  Density-
functional theory has proven to be accurate for most metals in the Periodic Table, including Pu 
[22], however, its use for calculating bond strength is entirely unique.  

 
 
 

Nearest Neighbor (x,y,z) Miller Indices 
(h,k,l) 

ΔE (mRy/atom) ΔE/u 

0.5  0.5  0 110 0.230 4.69 
-0.5 -0.5  0 -1-10 0.220 4.49 
0.5 -0.5  0 1-10 0.180 3.67 
-0.5  0.5  0 -110 0.170 3.47 
0.5  0    0.5 101 0.200 4.08 
-0.5  0   -0.5 -10-1 0.160 3.27 
-0.5  0    0.5 -101 0.230 4.69 
0.5  0   -0.5 10-1 0.190 3.88 
0   -0.5  0.5 0-11 0.190 3.88 
0    0.5 -0.5 01-1 0.160 3.27 
0    0.5  0.5 011 0.260 5.31 
0   -0.5 -0.5 0-1-1 0.180 3.67 

 
Table 1.  The nearest neighbor direction in x, y, z coordinates, Miller indices (h,k,l), change in 
energy (ΔE) due to a 2% shift of a 0,0,0 atom, and the change in energy normalized by the 
displacement length (ΔE/u). 

 
 

The results of the calculations are shown in Table 1 and Figure 3.  The nearest neighbor 
direction (x,y,z), Miller indices (h,k,l), change in energy (ΔE) due to a 2% shift of the 0,0,0 atom, 
and the change in energy normalized by the displacement length (ΔE/u) are shown in Table 1.  
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Notice how ΔE/u varies from ~3.3 to ~5.3, showing the large degree of variation in bond strength 
between the 12 nearest neighbors.  As shown in Figure 3, the twelve nearest neighbors can be 
separated into six pairs of two where the bond strengths are close in value: blue (3.3), black (3.5-
3.7), red (3.7-3.9), pink (3.9-4.1), green (4.5-4.7), and brown (4.7-5.3).  In the (001) plane, the 
[110] bond is roughly equal to the [

! 

110] bond (green), and the [

! 

110] bond is roughly equal to the 
[

! 

110] bond (black).  In the {011} planes, we see that [

! 

011]~[

! 

101] (blue), [

! 

011]~[

! 

101] (red), 
[

! 

011]~[

! 

101] (pink), and [

! 

011]~[

! 

101] (brown).  It is important to note that not only the bond 
strength, but also the repeatability of groupings dictate the choice of sets.  In other words, there is 
a clear separation between the brown and pink sets and the clear separation between the red and 
blue sets.  It is interesting that the bonds in the (001) plane are almost equal directly across the 
central atom, whereas the bonds in the {011} planes are not and have a more complicated 
arrangement. 

 
 

 
 
Figure 3.  Two stacked fcc unit cells with the central atom showing the 12 nearest neighbors.  In 
the case of plutonium, the 12 bonds with the nearest neighbors widely vary with strength and can 
be separated into six pairs.  When the fcc lattice is combined with the motif of these bond 
strengths the resultant structure is monoclinic Cm. 
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When an fcc lattice is joined with the calculated bond strengths as a motif, the resultant 
structure is c-centered monoclinic with the space group Cm.  This low symmetry space group is 
due to the fact that besides translational symmetry there is no rotational symmetry and only one 
mirror plane along the (110) plane. The new Bravais lattice for the structure is shown in Figure 
7, where (a) is the three-dimensional rendering of the c-centered unit cell and (b) is a two-
dimensional rendering viewed along the [001] direction.  In (b) the fcc lattice is shown by the 
purple box.  The c-centered unit cell is shown by the heavy red box with the green line marking 
the [110] mirror plane. 

 

 
 
Figure 7. (a) Three-dimensional and (b) two-dimensional representations of the c-centered 
monoclinic Bravais Lattice needed to fully describe δ-Pu. 
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 This space group has several ramifications.  First, it now seems no coincidence that the 
ground state α-phase of Pu is monoclinic P21/m and that here we show δ-Pu exhibits a 
monoclinic space group of Cm when the bonding strengths are accounted for as the motif.  Also, 
β-Pu is C2/m, where the only difference between the two space groups C2/m and Cm is an axis 
of two-fold rotation perpendicular to the mirror plane.  (Of course, in the real structures there is 
also a slight change of atomic positions).  The reduced space group of Cm for δ-Pu yields a 
viable path for the 

! 

"#$'  phase transformation of Pu and Pu alloys.  It has been shown that at 
low pressures (~ 0.4 GPa) δ transforms first to β′ then to α′ in Pu-Ce [23] and Pu-Al [24] alloys.  
Given how close the space groups are between the reduced space group of Cm for δ-Pu and 
C2/m β-Pu, this intermediate transformation to β makes sense. 

A second important consequence of these calculations is that the structure is not 
centrosymmetric (defined as: x = -x; y = -y; z = -z).  Classical crystallography assumes spherical 
atoms occupy each lattice site and that fcc crystals are centrosymmetric  However, the above 
arguments show that this is a flawed idea for δ-Pu.  The electronic structure (dominated by 5f 
states) produces bonding in δ-Pu with largely varying strength between the 12 nearest neighbors, 
thus making the crystal highly anisotropic and one that is the least applicable candidates for 
centrosymmetry compared to other fcc metals. 

If one is to imagine a spectrum of isotropy, aluminum would reside on one side and 
plutonium on the other.  With this in mind, we performed the same calculations on aluminum, 
which is well known to be the most isotropic fcc metal [25,26].  The results, which are in the 
same units as the Pu results, lie within 7.55-7.57 for the nearest-neighbor bond strengths.  The 
slight variation in the resulting numbers is numerical noise.  In other words, the method used 
above shows aluminum to have bond strengths for the 12 nearest neighbors which are identical, 
further supporting that Al is a highly isotropic metal. 

The reduction of symmetry of δ-Pu illustrated above clarifies recent experimental results, 
such as those from Lawson et al. [27,28] that suggest a tetragonal distortion occurs in Ga-
stabilized δ-Pu.  In the work by Lawson et al. [27,28], neutron diffraction revealed that the 
widths of the peaks were temperature dependent for Pu0:98Ga0:02.  As the sample was cooled, 
peak broadening occurred, increasing with subsequent cooling cycles.  This affect disappeared 
when heated to 650K.  The diffraction peaks were anisotropic, which were modeled by assuming 
a small tetragonal distortion to the crystal.  Because the changes of the diffraction peaks were 
observed at low temperature, it is possible that they are due to the anisotropic response of the δ-
Pu matrix to the ingrowth of monoclinic α’-Pu particles that form during an isothermal 
martensitic phase transformation at low temperatures [29].  If one introduces precipitates or 
defects such as vacancies, interstitials, dislocations, and/or He bubbles [30] into an anisotropic 
medium, the variation in bond strength will cause the lattice to extend more in the soft directions 
and less in the rigid directions.  Thus, tetragonal, orthorhombic, or monoclinic distortions in aged 
Ga-stabilized δ-Pu are logical, because precipitation of second-phase particles or the 
accumulation of damage will strain the lattice and contract/expand it disproportionately in 
different directions.  Also to note is the small value of C′ for δ-Pu [9,31,32], which implies a soft 
response of the system to a volume-conserving tetragonal distortion. 

Another interesting observation was that of Cox et al. [33], where extended X-ray 
absorption fine-structure spectroscopy was applied to Ga-stabilized δ-Pu.  In these experiments it 
was observed that the local structure of plutonium about the Ga atoms was well defined and quite 
similar to a typical fcc metal.  However, the local structure of plutonium around Pu atoms was 
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disordered, especially in the individual shells at radii greater than 3.5Å.  This means that there is 
a complexity in the distribution of the neighboring atoms in the successive shells around each Pu 
atom, and the authors ascribe this to local distortion of the Pu-Pu bonds in the vicinity of Ga 
impurities.  This again shows that when under stress, δ-Pu distorts in such a way as to lose its fcc 
crystal structure, likely due to the 12 nearest neighbor bonds having markedly different strengths. 

The two examples above were for δ-Pu in a perturbed system, and its anisotropic 
response.  However, the question arises what does the symmetry of δ-Pu appear as 
experimentally while under normal conditions?  This can be interrogated using high-resolution 
synchrotron-radiation-based x-ray diffraction.  While x-ray diffraction does not measure bond 
energies, it does measure electron charge density. The x-ray scattered intensity for a given 
reflection is determined by the Fourier transform of the charge density [34].  In the case where 
there is a spherical (isotropic) and non-spherical (anisotropic) part, each can be separated and 
calculated.  The spherical part will be much larger than the non-spherical part, and a rough 
calculation of the difference in intensity can be obtained by (1/Z)2.  In the case of Pu, any 
additional reflection due to anisotropic distribution of the valence electrons would be 
approximately 1 x 10-4 weaker than the primary reflections.  In reality, additional reflections are 
probably more on the order of 1 x 10-5  to 1 x 10-6 weaker, and the above simple equation is more 
accurate for light elements.  We predict that either 1) additional reflections or 2) highly 
asymmetric primary reflections should occur due to a reduction of symmetry, and that these 
effects should be detectable with present synchrotron sources and detectors [35].   

In conclusion, we have shown that when a fcc lattice is joined with the calculated 
anisotropic bonding of the 12 nearest neighbors as the motif (lattice + motif = space group) the 
resultant space group of δ-Pu is Cm rather than 

! 

Fm3m .  This approach uses first-principles in a 
novel way, and goes beyond the tenets of classical crystallography by incorporating anisotropic 
chemical bonds.  Our results enlighten why α-Pu is the only metal with a monoclinic ground 
state, reveal that δ-Pu does not have a center of symmetry, and lend a fundamental explanation 
for the tetragonal distortion purported to occur in Ga-stabilized δ-Pu as defects are introduced or 
as lattice damage is accumulated.  Finally, these results systematically illustrate that an 
expansion of classical crystallography that accounts for anisotropic electronic structure can be 
used to explain complicated materials in a way previously not utilized. 
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